Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 242: 116025, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422670

RESUMO

This work reports the construction of an HIV-specific genosensor through the modification of carbon screen-printed electrodes (CSPE) with graphene quantum dots decorated with L-cysteine and gold nanoparticles (cys-GQDs/AuNps). Cys-GQDs were characterized by FT-IR and UV-vis spectra and electronic properties of the modified electrodes were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The modification of the electrode surface with cys-GQDs and AuNps increased the electrochemical performance of the electrode, improving the electron transfer of the anionic redox probe [Fe(CN)6]3-/4- on the electrochemical platform. When compared to the bare surface, the modified electrode showed a 1.7 times increase in effective electrode area and a 29 times decrease in charge transfer resistance. The genosensor response was performed by differential pulse voltammetry, monitoring the current response of the anionic redox probe, confirmed with real genomic RNA samples, making it possible to detect 1 fg/mL. In addition, the genosensor maintained its response for 60 days at room temperature. This new genosensor platform for early detection of HIV, based on the modification of the electrode surface with cys-GQDs and AuNps, discriminates between HIV-negative and positive samples, showing a low detection limit, as well as good specificity and stability, which are relevant properties for commercial application of biosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Infecções por HIV , Nanopartículas Metálicas , Pontos Quânticos , Humanos , Grafite/química , Pontos Quânticos/química , Ouro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Cisteína , Técnicas Biossensoriais/métodos , Eletrodos , RNA , Limite de Detecção
2.
Talanta ; 258: 124342, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940569

RESUMO

Late-Life Depression (LLD) is one of the most prevalent psychiatric disorders in elderly, causing significant functional impairments. MicroRNAs are small molecules involved in the post-transcriptional regulation of gene expression. Elderly individuals diagnosed with LLD present down regulation of miR-184 (hsa-miR-184) expression compared to healthy patients. Therefore, this miR-184 can be used as a biomarker to diagnose LLD. Current LLD diagnosis depends primarily on clinical subjective identification, based on symptoms and variable scales. This work introduces a novel and facile approach for the LLD diagnosis based on the development of an electrochemical genosensor for miR-184 detection in plasma, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). DPV results presented a 2-Fold increase in current value for healthy patients, compared to individuals with LLD when monitoring ethidium bromide oxidation peak. For EIS, a 1.5-fold increase in charge transfer resistance for healthy elderly subjects was observed in comparison with depressed patients. In addition, the analytical performance of the biosensor was evaluated using DPV, obtaining a linear response ranging from 10-9 mol L-1 to 10-17 mol L-1 of miR-184 in plasma and a detection limit of 10 atomoles L-1. The biosensor presented reusability, selectivity and stability, the current response remained 72% up to 50 days of storage. Thus, the genosensor proved to be efficient in the diagnosis of LLD, as well as the accurate quantification of miR-184 in real plasma samples of healthy and depressed patients.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Humanos , Idoso , Depressão/diagnóstico , Depressão/genética , Técnicas Eletroquímicas/métodos , Biomarcadores , Regulação da Expressão Gênica , Técnicas Biossensoriais/métodos
3.
J Mol Recognit ; 36(2): e2995, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36116102

RESUMO

This work reports the construction of a novel nanostructured immunosensor for detection of the troponin I biomarker (cTnI). Anti-troponin I antibody was anchored on the modified graphite electrode with reduced graphene oxide and polytyramine for detection of troponin I in serum samples. The performance of the electro-immunosensor was evaluated by differential pulse voltammetry. The immunosensor presented a wide work range, from 4 ng mL-1 to 4 pg mL-1 , whose detection limit (4 pg mL-1 ) is significantly lower than the basal level in human serum, and maintained 100% of response after 30 days of storage. Moreover, the immunosensor showed good selectivity for detection of cTnI in real sample containing interfering substances and specificity of response to cTnI in the serum of healthy and sick patients, and demonstrated the possibility of reuse for two consecutive analyses, in addition to using a simplified and inexpensive platform when compared to other devices, demonstrating them excellent potential for application in diagnosis in the early stages of acute myocardial infarction.


Assuntos
Técnicas Biossensoriais , Grafite , Humanos , Limite de Detecção , Imunoensaio , Troponina I/análise , Técnicas Eletroquímicas , Ouro
4.
Talanta ; 235: 122694, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517578

RESUMO

This work reports a simple strategy for Candida auris genomic DNA (gDNA) detection, a multi-resistant fungus associated with nosocomial outbreaks in healthcare settings, presenting high mortality and morbidity rates. The platform was developed using gold electrode sensitized with specific DNA capture probe and ninhydrin as a novel DNA hybridization indicator. The genosensor was able to detect C. auris in urine sample by differential pulse voltammetry and electrochemical impedance spectroscopy. The biosensor's analytical performance was evaluated by differential pulse voltammetry, detecting up to 4.5 pg µL-1 of C. auris gDNA in urine (1:10, V/V). Moreover, the genosensor was reused eight times with no loss in the current signal response. The genosensor showed selectivity and stability, maintaining 100% of its response up to 80 days of storage. In order to analyze interactions of single and double-stranded DNA with ninhydrin, SEM, AFM and molecular dynamics studies followed by docking simulations were performed. Theoretical calculations showed ninhydrin interactions more favorably with dsDNA in an A-T rich binding pocket rather than with the ssDNA. Therefore, the proposed system is a promising electrochemical detection device towards a more accurate detection of C. auris gDNA in biological samples.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Candida/genética , DNA , Ninidrina
5.
J Phys Condens Matter ; 33(5)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33080580

RESUMO

All inorganic layer-by-layer (LbL) thin films composed by TiO2nanoparticles and [Al(OH)4]-anions (TiO2/AlOx) as well as Al2O3and Nb2O5nanoparticles (Al2O3/Nb2O5) have been deposited to fluorine-doped tin-oxide coated glass (FTO) surfaces and applied as blocking layers in dye-sensitized solar cells (DSCs). Structural and morphological characterization of the LbL films by different techniques reveal that inTiO2/AlOxassembly, aluminate anions undergo condensation reactions on the TiO2surface leading to the formation of highly homogeneous films with unique optical properties. After 25 depositions transmittance losses below 10% in relation to the bare FTO substrate are observed. Electrochemical impedance spectroscopy shows thatTiO2/AlOxlayers impose an effective barrier for the charge recombination at FTO/electrolyte interface with an electron exchange time constant 50-fold higher than that for bare FTO. As a result, an improvement of 85% in the overall conversion efficiency of DSCs was observed with the employment of TiO2/AlOxblocking layers.Al2O3/Nb2O5LbL films can also work as blocking layers in DSCs but not as efficient, which is associated with the poor homogeneity of the film and its capacitive behavior. The production of cost-effective blocking layers with a low light scattering in the visible region is an important feature toward the application of DSC in other Building-integrated photovoltaic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...